DIMENSIONALITY REDUCTION BY MATRIX FACTORIZATION USING CONCEPT LATTICE IN DATA MINING

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction by Matrix Factorization Using Concept Lattice in Data Mining

Concept lattices is the important technique that has become a standard in data analytics and knowledge presentation in many fields such as statistics, artificial intelligence, pattern recognition ,machine learning ,information theory ,social networks, information retrieval system and software engineering. Formal concepts are adopted as the primitive notion. A concept is jointly defined as a pai...

متن کامل

Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization

We describe an algorithm for nonlinear dimensionality reduction based on semidefinite programming and kernel matrix factorization. The algorithm learns a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. In earlier work, the kernel matrix was learned by maximizing the variance in feature space while preserving the distances and angles between nearest neigh...

متن کامل

Structure preserving non-negative matrix factorization for dimensionality reduction

The problem of dimensionality reduction is to map data from high dimensional spaces to low dimensional spaces. In the process of dimensionality reduction, the data structure, which is helpful to discover the latent semantics and simultaneously respect the intrinsic geometric structure, should be preserved. In this paper, to discover a low-dimensional embedding space with the nature of structure...

متن کامل

Nonnegative Matrix Factorization for Semi-supervised Dimensionality Reduction

We show how to incorporate information from labeled examples into nonnegative matrix factorization (NMF), a popular unsupervised learning algorithm for dimensionality reduction. In addition to mapping the data into a space of lower dimensionality, our approach aims to preserve the nonnegative components of the data that are important for classification. We identify these components from the sup...

متن کامل

Matrix Factorization Techniques for Data Mining

General Interests Networking, information technology, information systems, computational theory, approximation algorithms, optimization, numerical methods, linear algebra, calculus, data mining, machine learning, artificial intelligence, theory of fractals and chaos, advances in science and technology in general Age 21 (born on 23rd April 1989) Languages Actively speak and write Slovenian, Engl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Research in Engineering and Technology

سال: 2015

ISSN: 2321-7308,2319-1163

DOI: 10.15623/ijret.2015.0410076