Dilatation, Pointwise Lipschitz Constants, and Condition N on Curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Gâteaux Differentiability of Pointwise Lipschitz Mappings

Abstract. We prove that for every function f : X → Y , where X is a separable Banach space and Y is a Banach space with RNP, there exists a set A ∈ Ã such that f is Gâteaux differentiable at all x ∈ S(f) \ A, where S(f) is the set of points where f is pointwise-Lipschitz. This improves a result of Bongiorno. As a corollary, we obtain that every K-monotone function on a separable Banach space is...

متن کامل

Lipschitz Extension Constants Equal Projection Constants

For a Banach space V we define its Lipschitz extension constant, LE(V ), to be the infimum of the constants c such that for every metric space (Z, ρ), every X ⊂ Z, and every f : X → V , there is an extension, g, of f to Z such that L(g) ≤ cL(f), where L denotes the Lipschitz constant. The basic theorem is that when V is finite-dimensional we have LE(V ) = PC(V ) where PC(V ) is the well-known p...

متن کامل

Pointwise construction of Lipschitz aggregation operators

This paper establishes tight upper and lower bounds on Lipschitz aggregation operators considering their diagonal, opposite diagonal and marginal sections. Also we provide explicit formulae to determine the bounds. These are useful for construction of these type of aggregation operators, especially using interpolation schemata.

متن کامل

Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants

In this paper, the global optimization problem miny∈S F (y) with S being a hyperinterval in R and F (y) satisfying the Lipschitz condition with an unknown Lipschitz constant is considered. It is supposed that the function F (y) can be multiextremal, non-differentiable, and given as a ‘black-box’. To attack the problem, a new global optimization algorithm based on the following two ideas is prop...

متن کامل

Lipschitz Constants to Curve Complexes

We determine the asymptotic behavior of the optimal Lipschitz constant for the systole map from Teichmüller space to the curve complex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2014

ISSN: 0026-2285

DOI: 10.1307/mmj/1417799221