Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage
نویسندگان
چکیده
منابع مشابه
High Methane Storage Capacity in Aluminum Metal–Organic Frameworks
The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal-organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and ...
متن کاملPhotoluminescent Metal–Organic Frameworks for Gas Sensing
Luminescence of porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is sensitive to the type and concentration of chemical species in the surrounding environment, because these materials combine the advantages of the highly regular porous structures and various luminescence mechanisms, as well as diversified host-guest interactions. In the past few years, luminescent MOFs hav...
متن کاملHydrogen storage in microporous metal-organic frameworks.
Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the ad...
متن کاملDesign of covalent organic frameworks for methane storage.
We designed 14 new covalent organic frameworks (COFs), which are expected to adsorb large amounts of methane (CH(4)) at 298 K and up to 300 bar. We have calculated their delivery uptake using grand canonical Monte Carlo (GCMC) simulations. We also report their thermodynamic stability based on 7.5 ns molecular dynamics simulations. Two new frameworks, COF-103-Eth-trans and COF-102-Ant, are found...
متن کاملPorous Metal–Organic Polyhedral Frameworks with Optimal Molecular Dynamics and Pore Geometry for Methane Storage
Natural gas (methane, CH4) is widely considered as a promising energy carrier for mobile applications. Maximizing the storage capacity is the primary goal for the design of future storage media. Here we report the CH4 storage properties in a family of isostructural (3,24)-connected porous materials, MFM-112a, MFM-115a, and MFM-132a, with different linker backbone functionalization. Both MFM-112...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Engineering Science
سال: 2015
ISSN: 0009-2509
DOI: 10.1016/j.ces.2014.09.031