Diffusion K-means clustering on manifolds: Provable exact recovery via semidefinite relaxations

نویسندگان

چکیده

We introduce the diffusion K-means clustering method on Riemannian submanifolds, which maximizes within-cluster connectedness based distance. The constructs a random walk similarity graph with vertices as data points randomly sampled manifolds and edges similarities given by kernel that captures local geometry of manifolds. is multi-scale tool suitable for non-linear non-Euclidean geometric features in mixed dimensions. Given number clusters, we propose polynomial-time convex relaxation algorithm via semidefinite programming (SDP) to solve K-means. In addition, also nuclear norm regularized SDP adaptive clusters. both cases, show exact recovery SDPs can be achieved under between-cluster separability together quantify hardness manifold problem. further localized using bandwidth estimated from nearest neighbors. fully probability density structures underlying submanifolds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating K-means-type Clustering via Semidefinite Programming

One of the fundamental clustering problems is to assign n points into k clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-hard. In this paper, by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP). We show that our 0-1 SDP model provides an unified framework for several clustering approaches such as normalized k-cut and spectr...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Advanced Optimization Laboratory Title: Approximating K-means-type clustering via semidefinite programming

One of the fundamental clustering problems is to assign n points into k clusters based on the minimal sum-of-squares(MSSC), which is known to be NP-hard. In this paper, by using matrix arguments, we first model MSSC as a so-called 0-1 semidefinite programming (SDP). We show that our 0-1 SDP model provides an unified framework for several clustering approaches such as normalized k-cut and spectr...

متن کامل

On semidefinite programming relaxations of maximum $$k$$ -section

We derive a new semidefinite programming bound for the maximum k-section problem. For k = 2 (i.e. for maximum bisection), the new bound is least as strong as the well-known bound by Frieze and Jerrum [A. Frieze and M. Jerrum. Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION. Algorithmica, 18(1): 67–81, 1997]. For k ≥ 3 the new bound dominates a bound of Karish and Rendl [S.E. K...

متن کامل

On Approximating Complex Quadratic Optimization Problems via Semidefinite Programming Relaxations

In this paperwe study semidefinite programming (SDP)models for a class of discrete and continuous quadratic optimization problems in the complex Hermitian form. These problems capture a class of well-known combinatorial optimization problems, as well as problems in control theory. For instance, they include theMAX-3-CUT problem where the Laplacian matrix is positive semidefinite (in particular,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2021

ISSN: ['1096-603X', '1063-5203']

DOI: https://doi.org/10.1016/j.acha.2020.03.002