Differential equations with nonlinear boundary conditions
نویسندگان
چکیده
منابع مشابه
Ordinary Differential Equations with Nonlinear Boundary Conditions
The method of lower and upper solutions combined with the monotone iterative technique is used for ordinary differential equations with nonlinear boundary conditions. Some existence results are formulated for such problems. 2000 Mathematics Subject Classification: 34A45, 34B15, 34A40.
متن کاملNonlinear fractional differential equations with integral boundary value conditions
and Applied Analysis 3 Lemma 2.5. Let α > 0 then
متن کاملOn Delay Differential Equations with Nonlinear Boundary Conditions
The monotone iterative method is used to obtain sufficient conditions which guarantee that a delay differential equation with a nonlinear boundary condition has quasisolutions, extremal solutions, or a unique solution. Such results are obtained using techniques of weakly coupled lower and upper solutions or lower and upper solutions. Corresponding results are also obtained for such problems wit...
متن کاملDifferential equations involving causal operators with nonlinear periodic boundary conditions
The notion of causal operators is extended to periodic boundary value problems with nonlinear boundary conditions in this paper. By utilizing the monotone iterative technique and the method of lower and upper solutions (resp. weakly coupled lower and upper solutions), we establish the existence of the extremal solutions (resp. weakly coupled extremal quasi-solutions) for nonlinear periodic boun...
متن کاملThe existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions
In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1994
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1994-1233970-x