Differentiability of Functions on Spheres and Criterions of Convexity

نویسندگان

چکیده

Some basic concepts for functions defined on subsets of the unit sphere, such as s-directional derivative, s-gradient and s-Gateaux s-Frechet differentiability etc, are introduced investigated. These different from usual ones Euclidean spaces, however, results obtained here very similar. Then, applications, we provide some criterions s-convexity spheres which improvements or refinements known results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral functions on Jordan algebras: differentiability and convexity properties

A spectral function on a formally real Jordan algebra is a real-valued function which depends only on the eigenvalues of its argument. One convenient way to create them is to start from a function f : R 7→ R which is symmetric in the components of its argument, and to define the function F (u) := f(λ(u)) where λ(u) is the vector of eigenvalues of u. In this paper, we show that this construction...

متن کامل

Differentiability v.s. convexity for complementarity functions

It is known that complementarity functions play an important role in dealing with complementarity problems. The most well known complementarity problem is the symmetric cone complementarity problem (SCCP) which includes nonlinear complementarity problem (NCP), semidefinite complementarity problem (SDCP), and second-order cone complementarity problem (SOCCP) as special cases. Moreover, there is ...

متن کامل

Differentiability of Distance Functions and a Proximinal Property Inducing Convexity

In a normed linear space X, consider a nonempty closed set K which has the property that for some r > 0 there exists a set of points xo € X\K, d(xoK) > r, which have closest points p(xo) € K and where the set of points xo — r((xo — p(xo))/\\xo — p(zo)||) is dense in X\K. If the norm has sufficiently strong differentiability properties, then the distance function d generated by K has similar dif...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wuhan University Journal of Natural Sciences

سال: 2022

ISSN: ['1007-1202', '1993-4998']

DOI: https://doi.org/10.1051/wujns/2022274273