Difference bodies in complex vector spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angles in Complex Vector Spaces

The article reviews some of the (fairly scattered) information available in the mathematical literature on the subject of angles in complex vector spaces. The following angles and their relations are considered: Euclidean, complex, and Hermitian angles, (Kasner’s) pseudo-angle, the Kähler angle (synonyms for the latter used in the literature are: angle of inclination, characteristic deviation, ...

متن کامل

Jordan's principal angles in complex vector spaces

We analyse the possible recursive definitions of principal angles and vectors in complex vector spaces and give a new projector based definition. This enables us to derive important properties of the principal vectors and to generalize a result of Björck and Golub (Math. Comput. 1973; 27(123):579–594), which is the basis of today’s computational procedures in real vector spaces. We discuss othe...

متن کامل

s-Topological vector spaces

In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...

متن کامل

Packing vector spaces into vector spaces

A partial t-spread in Fq is a collection of t-dimensional subspaces with trivial intersection such that each non-zero vector is covered at most once. How many t-dimensional subspaces can be packed into Fq , i.e., what is the maximum cardinality of a partial t-spread? An upper bound, given by Drake and Freeman, survived more than forty years without any improvement. At the end of 2015, the upper...

متن کامل

Volume difference inequalities for the projection and intersection bodies

In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2012

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2012.09.002