منابع مشابه
Ricci Tensor of Diagonal Metric
Efficient formulae of Ricci tensor for an arbitrary diagonal metric are presented.
متن کاملRicci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds
We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.
متن کاملon matsumoto metrics of special ricci tensor
in this paper, the matsumoto metric with special ricci tensor has been investigated. it is proved that, if is ofpositive (negative) sectional curvature and f is of -parallel ricci curvature with constant killing 1-form ,then (m,f) is a riemannian einstein space. in fact, we generalize the riemannian result established by akbar-zadeh.
متن کاملConformal Deformations of the Smallest Eigenvalue of the Ricci Tensor
We consider deformations of metrics in a given conformal class such that the smallest eigenvalue of the Ricci tensor to be a constant. It is related to the notion of minimal volumes in comparison geometry. Such a metric with the smallest eigenvalue of the Ricci tensor to be a constant is an extremal metric of volume in a suitable sense in the conformal class. The problem is reduced to solve a P...
متن کاملricci tensor for $gcr$-lightlike submanifolds of indefinite kaehler manifolds
we obtain the expression of ricci tensor for a $gcr$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $gcr$-lightlike submanifold of anindefinite complex space form. moreover, we have proved that everyproper totally umbilical $gcr$-lightlike submanifold of anindefinite kaehler manifold is a totally geodesic $gcr$-lightlikesubmanifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Geometric Analysis
سال: 2020
ISSN: 1050-6926,1559-002X
DOI: 10.1007/s12220-020-00495-y