Diagonal reduction of matrices over commutative semihereditary Bezout rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal Matrix Reduction over Refinement Rings

  Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement.  Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N  if and only if Mm ~Nm for all maximal ideal m of  R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...

متن کامل

Factorial Rings and Diagonal Reduction of Matrices

The class of Bézout factorial rings is introduced and characterized. Using the factorial properties of such a ring R, and given a n×m matrix A over R, we find P ∈ GL(n, R) and Q ∈ GL(m, R) such that PAQ is diagonal with every element in the diagonal dividing the following one. Key-words: Ring, Bézout, principal, factorization, reduction of matrices.

متن کامل

Associated Graphs of Modules Over Commutative Rings

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...

متن کامل

Finitely Presented Modules over Semihereditary Rings

We prove that each almost local-global semihereditary ring R has the stacked bases property and is almost Bézout. More precisely, if M is a finitely presented module, its torsion part tM is a direct sum of cyclic modules where the family of annihilators is an ascending chain of invertible ideals. These ideals are invariants of M. Moreover M/tM is a projective module which is isomorphic to a dir...

متن کامل

Finitely presented modules over semihereditary rings

We prove that each almost local-global semihereditary ring R has the stacked bases property and is almost Bézout. More precisely, if M is a finitely presented module, its torsion part tM is a direct sum of cyclic modules where the family of annihilators is an ascending chain of invertible ideals. These ideals are invariants of M . Moreover M/tM is a projective module which is isomorphic to a di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2019

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2018.1521419