Diagonability of idempotent matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On idempotent matrices over semirings

Idempotent matrices play a significant role while dealing with different questions in matrix theory and its applications. It is easy to see that over a field any idempotent matrix is similar to a diagonal matrix with 0 and 1 on the main diagonal. Over a semiring the situation is quite different. For example, the matrix J of all ones is idempotent over Boolean semiring. The first characterizatio...

متن کامل

Nonnegativity of Schur complements of nonnegative idempotent matrices

Let A be a nonnegative idempotent matrix. It is shown that the Schur complement of a submatrix, using the Moore-Penrose inverse, is a nonnegative idempotent matrix if the submatrix has a positive diagonal. Similar results for the Schur complement of any submatrix of A are no longer true in general.

متن کامل

Spectral Lattices of Reducible Matrices over Completed Idempotent Semifields

Previous work has shown a relation between L-valued extensions of FCA and the spectra of some matrices related to L-valued contexts. We investigate the spectra of reducible matrices over completed idempotent semifields in the framework of dioids, naturally-ordered semirings, that encompass several of those extensions. Considering special sets of eigenvectors also brings out complete lattices in...

متن کامل

Eigenvalues and Eigenvectors of Matrices in Idempotent Algebra

The eigenvalue problem for the mattix of a generalized linear operator is considered. In the case of irreducible mattices, the problem is reduced to the analysis of an idempotent analogue of the charactetistic polynomial of the mattix. The eigenvectors are obtained as solutions to a homogeneous equation. The results are then extended to cover the case of an arbitrary mattix. It is shown how to ...

متن کامل

A new rank formula for idempotent matrices with applications

A complex square matrix A is said to be idempotent, or a projector, whenever A2 = A; when A is idempotent, and Hermitian (or real symmetric), it is often called an orthogonal projector, otherwise an oblique projector. Projectors are closely linked to generalized inverses of matrices. For example, for a given matrix A the product PA = AA + is well known as the orthogonal projector on the range (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1966

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1966.19.535