Deviance Information Criteria for Model Selection in Approximate Bayesian Computation
نویسندگان
چکیده
منابع مشابه
Deviance Information Criteria for Model Selection in Approximate Bayesian Computation
Approximate Bayesian computation (ABC) is a class of algorithmic methods in Bayesian inference using statistical summaries and computer simulations. ABC has become popular in evolutionary genetics and in other branches of biology. However model selection under ABC algorithms has been a subject of intense debate during the recent years. Here we propose novel approaches to model selection based o...
متن کاملApproximate Bayesian Model Selection with the Deviance Statistic
Bayesian model selection poses two main challenges: the specification of parameter priors for all models, and the computation of the resulting Bayes factors between models. There is now a large literature on automatic and objective parameter priors in the linear model. One important class are g-priors, which were recently extended from linear to generalized linear models (GLMs). We show that th...
متن کاملModel Selection in Historical Research Using Approximate Bayesian Computation
FORMAL MODELS AND HISTORY Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses...
متن کاملDeviance Information Criteria for Missing Data Models
The deviance information criterion (DIC) introduced by Spiegelhalter et al. (2002) for model assessment and model comparison is directly inspired by linear and generalised linear models, but it is open to different possible variations in the setting of missing data models, depending in particular on whether or not the missing variables are treated as parameters. In this paper, we reassess the c...
متن کاملApproximate Bayesian Computation for Smoothing
We consider a method for approximate inference in hidden Markov models (HMMs). The method circumvents the need to evaluate conditional densities of observations given the hidden states. It may be considered an instance of Approximate Bayesian Computation (ABC) and it involves the introduction of auxiliary variables valued in the same space as the observations. The quality of the approximation m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Applications in Genetics and Molecular Biology
سال: 2011
ISSN: 1544-6115,2194-6302
DOI: 10.2202/1544-6115.1678