Development of SSQ Based 157 nm Photoresist.
نویسندگان
چکیده
منابع مشابه
Top Surface Imaging at 157 nm
Top surface imaging (TSI) has had an interesting history. This process showed great promise in the late 1980’s and several attempts were made to introduce it to full-scale manufacturing. Unfortunately, defect density problems limited the process and it fell from favor. TSI emerged again as an important part of the EUV and 193 nm strategies in the early stages of those programs because it offere...
متن کاملVUV 157 nm laser ablation of composite structures
We report on the laser ablation of composite prismatic structures using a vacuum ultraviolet (VUV) 157 nm F2 laser. Polycarbonate and CR-39 substrates have been intentionally seeded with silver wires and silicon carbide whiskers respectively. The seed particles remain attached to the underlying substrate after laser ablation, forming composite silver-polycarbonate and silicon carbide-CR-39 inte...
متن کامل157 nm photodissociation of dipeptide ions containing N-terminal arginine.
Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar...
متن کاملSingle Layer Fluoropolymer Resists for 157 nm Lithography
We have developed a family of 157 nm resists that utilize fluorinated terpolymer resins composed of 1) tetrafluoroethylene (TFE), 2) a norbornene fluoroalcohol (NBFOH), and 3) t-butyl acrylate (t-BA). TFE incorporation reduces optical absorbance at 157 nm, while the presence of a norbornene functionalized with hexafluoroisopropanol groups contributes to aqueous base (developer) solubility and e...
متن کاملBottom Anti-Reflective Coatings (BARCs) for 157-nm!Lithography
Bottom anti-reflective coatings (BARCs) are essential for achieving the 65-nm node resolution target by minimizing the substrate reflectivity to less than 1% and by planarizing substrates. We believe that the developments in 157-nm BARC products are on track to make them available for timely application in 157-nm lithography. We have made some significant improvements in resist compatibility an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Photopolymer Science and Technology
سال: 2002
ISSN: 0914-9244,1349-6336
DOI: 10.2494/photopolymer.15.693