DETERMINISTIC INITIALIZATION OF THE K-MEANS ALGORITHM USING HIERARCHICAL CLUSTERING
نویسندگان
چکیده
منابع مشابه
Deterministic Initialization of the K-Means Algorithm Using Hierarchical Clustering
K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. Many of these methods, however, have superlinear complexity in the number of data points, making them imprac...
متن کاملLinear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm
Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm’s sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been propos...
متن کاملEfficient and Fast Initialization Algorithm for K- means Clustering
The famous K-means clustering algorithm is sensitive to the selection of the initial centroids and may converge to a local minimum of the criterion function value. A new algorithm for initialization of the K-means clustering algorithm is presented. The proposed initial starting centroids procedure allows the K-means algorithm to converge to a “better” local minimum. Our algorithm shows that ref...
متن کاملCluster center initialization algorithm for K-means clustering
Performance of iterative clustering algorithms which converges to numerous local minima depend highly on initial cluster centers. Generally initial cluster centers are selected randomly. In this paper we propose an algorithm to compute initial cluster centers for K-means clustering. This algorithm is based on two observations that some of the patterns are very similar to each other and that is ...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pattern Recognition and Artificial Intelligence
سال: 2012
ISSN: 0218-0014,1793-6381
DOI: 10.1142/s0218001412500188