Determination of electron affinity of phenyl radical by dissociative electron attachment technique
نویسندگان
چکیده
منابع مشابه
Dissociative electron attachment and electron energy-loss spectra of phenyl azide
Electron-induced chemistry—dissociative electron attachment (DEA)—was studied for phenyl azide. The major fragment corresponded to the loss of N2 and formation of the phenylnitrene anion. This process has an onset already at zero kinetic energy of the incident electron and is interpreted as proceeding via the A′′π∗ electronic ground state of the phenyl azide anion. Other fragments, N3 and CN −,...
متن کاملDissociative electron attachment to DNA.
Electron-stimulated desorption of anions from thin films of linear and supercoiled DNA is investigated in the range 3-20 eV. Resonant structures are observed with maxima at 9.4+/-0.3, 9.2+/-0.3, and 9.2+/-0.3 eV, respectively, in the yield dependence of H-, O-, and OH- on the incident electron energy. Their formation is attributed to dissociative electron attachment.
متن کاملDissociative electron attachment to abasic DNA.
Thin films of the short single DNA strand, GCAT, in which one of the bases has been removed were bombarded with 3 to 15 eV electrons. The yield functions of the H(-), O(-) and OH(-) ions desorbed from these films exhibit a broad peak near 9 eV, which is attributed to dissociative electron attachment to the basic molecules. Whereas removal of any one of the bases considerably decreases N-glycosi...
متن کاملA dissociative electron attachment cross-section estimator
Dissociative electron attachment (DEA) is the major process where molecules are destroyed in low-energy plasmas. DEA cross sections are therefore important for a whole variety of applications but are both hard to measure or compute accurately. A method for estimating DEA cross sections based a simple resonance plus survival model is presented. Test results are presented for DEA of molecular oxy...
متن کاملDissociative electron attachment to C2F5 radicals.
Dissociative electron attachment to the reactive C(2)F(5) molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F(-) is formed close to zero electron energy in dissociative electron attachment to C(2)F(5). The afterglow measurements also show that F(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Organic Mass Spectrometry
سال: 1993
ISSN: 0030-493X,1096-9888
DOI: 10.1002/oms.1210280324