Determinant of the distance matrix of a tree with matrix weights
نویسندگان
چکیده
منابع مشابه
determinant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولDeterminant of the distance matrix of a tree with matrix weights
Abstract Let T be a tree with n vertices and let D be the distance matrix of T. According to a classical result due to Graham and Pollack, the determinant of D is a function of n, but does not depend on T. We allow the edges of T to carry weights, which are square matrices of a fixed order. The distance matrix D of T is then defined in a natural way. We obtain a formula for the determinant of D...
متن کاملProduct distance matrix of a tree with matrix weights
Let T be a tree on n vertices and let the n− 1 edges e1, e2, . . . , en−1 have weights that are s× s matrices W1,W2, . . . ,Wn−1, respectively. For two vertices i, j, let the unique ordered path between i and j be pi,j = er1er2 . . . erk . Define the distance between i and j as the s × s matrix Ei,j = ∏k p=1Wep . Consider the ns × ns matrix D whose i, j-th block is the matrix Ei,j . We give a f...
متن کاملOn the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
Consider an n × <span style="fon...
متن کاملThe distance matrix of a bidirected tree
We refer to [4], [8] for basic definitions and terminology in graph theory. A tree is a simple connected graph without any circuit. We consider trees in which each edge is replaced by two arcs in either direction. In this paper, such trees are called bidirected trees. We now introduce some notation. Let e,0 be the column vectors consisting of all ones and all zeros, respectively, of the appropr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2006
ISSN: 0024-3795
DOI: 10.1016/j.laa.2005.02.022