DETEKSI PENYAKIT DIABETES DENGAN METODE FUZZY C-MEANS CLUSTERING DAN K-MEANS CLUSTERING
نویسندگان
چکیده
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملIntegrating Fuzzy C-Means Clustering Technique with K-Means Clustering Technique for CBIR
Image database sizes have increased enormously in the recent years due to the development of the technology which has developed the need for Content Based Image Retrieval (CBIR) system. In this study a CBIR system that allows searching and retrieves images from the databases is developed using the fuzzy c-means algorithm and K-means clustering, the system uses the low level features like color,...
متن کاملFuzzy K-means clustering with missing values
Fuzzy K-means clustering algorithm is a popular approach for exploring the structure of a set of patterns, especially when the clusters are overlapping or fuzzy. However, the fuzzy K-means clustering algorithm cannot be applied when the real-life data contain missing values. In many cases, the number of patterns with missing values is so large that if these patterns are removed, then sufficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computatio : Journal of Computer Science and Information Systems
سال: 2017
ISSN: 2549-2829,2549-2810
DOI: 10.24912/computatio.v1i1.233