Detection of Multiple Structural Breaks in Large Covariance Matrices

نویسندگان

چکیده

This article studies multiple structural breaks in large contemporaneous covariance matrices of high-dimensional time series satisfying an approximate factor model. The the second-order moment structure common components are due to sudden changes either loadings or latent factors, requiring appropriate transformation models facilitate estimation (transformed) factors and via classical principal component analysis. With estimated idiosyncratic errors, easy-to-implement CUSUM-based detection technique is introduced consistently estimate location number correctly identify whether they originate error components. algorithms Wild Binary Segmentation for Covariance (WBS-Cov) Sparsified (WSBS-Cov) used components, respectively. Under some technical conditions, asymptotic properties proposed methodology derived with near-optimal rates (up a logarithmic factor) achieved breaks. Monte Carlo simulation conducted examine finite-sample performance developed method its comparison other existing approaches. We finally apply our study daily returns S&P 500 constituents few including those occurring during 2007–2008 financial crisis recent coronavirus (COVID-19) outbreak. An R package “BSCOV” provided implement algorithms. Supplementary materials this available online.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Dynamic Covariance Matrices

Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is Dynamic Conditional Correlation (DCC), derived from the ARCH/GARCH family started by Engle (1982). In ...

متن کامل

Estimation of Large Covariance Matrices

This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (logp)/n→ 0, and obtain explicit rates. The results are uniform over some fairly natural well-conditioned fam...

متن کامل

Regularized estimation of large covariance matrices

This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (logp)/n→ 0, and obtain explicit rates. The results are uniform over some fairly natural well-conditioned fam...

متن کامل

Generalized Thresholding of Large Covariance Matrices

We propose a new class of generalized thresholding operators that combine thresholding with shrinkage, and study generalized thresholding of the sample covariance matrix in high dimensions. Generalized thresholding of the covariance matrix has good theoretical properties and carries almost no computational burden. We obtain an explicit convergence rate in the operator norm that shows the tradeo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Business & Economic Statistics

سال: 2022

ISSN: ['1537-2707', '0735-0015']

DOI: https://doi.org/10.1080/07350015.2022.2076686