Detection of Electricity Theft Behavior Based on Improved Synthetic Minority Oversampling Technique and Random Forest Classifier
نویسندگان
چکیده
منابع مشابه
RBM-SMOTE: Restricted Boltzmann Machines for Synthetic Minority Oversampling Technique
The problem of imbalanced data, i.e., when the class labels are unequally distributed, is encountered in many real-life application, e.g., credit scoring, medical diagnostics. Various approaches aimed at dealing with the imbalanced data have been proposed. One of the most well known data pre-processing method is the Synthetic Minority Oversampling Technique (SMOTE). However, SMOTE may generate ...
متن کاملA Classification Model for Imbalanced Medical Data based on PCA and Farther Distance based Synthetic Minority Oversampling Technique
Medical data are extensively used in the diagnosis of human health. So it has played a vital role for physicians as well as in medical engineering. Accordingly, many types of research are going on related to this to have a better prediction of the diseases or to improve the diagnosis quality. However, most of the researchers work on either dimensionality space or imbalanced data. Due to this, s...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملAutomated epileptic seizure detection using improved correlation-based feature selection with random forest classifier
Analysis of electroencephalogram (EEG) signal is crucial due to its non-stationary characteristics, which could lead the way to proper detection method for the treatment of patients with neurological abnormalities, especially for epilepsy. The performance of EEG-based epileptic seizure detection relies largely on the quality of selected features from an EEG data that characterize seizure activi...
متن کاملAn Improved Naive Bayes Classifier-based Noise Detection Technique for Classifying User Phone Call Behavior
The presence of noisy instances in mobile phone data is a fundamental issue for classifying user phone call behavior (i.e., accept, reject, missed and outgoing), with many potential negative consequences. The classification accuracy may decrease and the complexity of the classifiers may increase due to the number of redundant training samples. To detect such noisy instances from a training data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2020
ISSN: 1996-1073
DOI: 10.3390/en13082039