Detecting Anomalies in Computer Networks Recurrent Neural Networks
نویسندگان
چکیده
منابع مشابه
Detecting Interrogative Utterances with Recurrent Neural Networks
In this paper, we explore different neural network architectures that can predict if a speaker of a given utterance is asking a question or making a statement. We compare the outcomes of regularization methods that are popularly used to train deep neural networks and study how different context functions can affect the classification performance. We also compare the efficacy of gated activation...
متن کاملDetecting Anomalies in Sensor Data using Neural Networks
There exists a need within the Department of Defense (DoD) to provide a highly responsive and costeffective anomaly detection capability for satellite health monitoring. The solution must address current Battle Management Command and Control (BMC2) deficiencies. A soft-computing solution is robust in that it could be engineered to detect anomalies without requiring pre-set thresholds and thus e...
متن کاملComputer Assisted Composition with Recurrent Neural Networks
Sequence modeling with neural networks has lead to powerful models of symbolic music data. We address the problem of exploiting these models to reach creative musical goals. To this end we generalise previous work, which sampled Markovian sequence models under the constraint that the sequence belong to the language of a given finite state machine. We consider more expressive non-Markov models, ...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Southwest Jiaotong University
سال: 2019
ISSN: 0258-2724
DOI: 10.35741/issn.0258-2724.54.5.12