Destabilising nonnormal stochastic differential equations
نویسندگان
چکیده
In this article we address the stability of linear stochastic differential equations. particular, focus our attention on non-normality in Following Higham and Mao study a test problem for non-normal equations, that is stable without noise, prove property conjectured by Mao, an exponentially small (in dimension) noise term able to destabilise mean-square sense solution SDE.
منابع مشابه
Stochastic differential equations and integrating factor
The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.
متن کاملSimulating Stochastic Differential Equations
Let S t be the time t price of a particular stock. We know that if S t ∼ GBM (µ, σ 2), then S t = S 0 e (µ−σ 2 /2)t+σBt (1) where B t is the Brownian motion driving the stock price. An alternative possibility is to use a stochastic differential equation (SDE) to describe the evolution of S t. In this case we would write S t = S 0 + t 0 µS u du + t 0 σS u dB u (2) or in shorthand , dS t = µS t d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2023
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2022140