Dessins d’enfants in N = 2 $$ \mathcal{N}=2 $$ generalised quiver theories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On N = 2 Seiberg Duality for Quiver Theories

We consider a general class of symmetries of hyper-Kähler quotients which can be interpreted as classical analogs of Seiberg duality for N = 2 supersymmetric quiver gauge theories in the baryonic Higgs branch. Along the way we find that a limit application of this duality yields new exotic realizations of ALE spaces as hyper-Kähler quotients. We also discuss how these results admit in some part...

متن کامل

Meta - stable A n quiver gauge theories

We study metastable dynamical breaking of supersymmetry in An quiver gauge theories. We present a general analysis and criteria for the perturbative existence of metastable vacua in quivers of any length. Different mechanisms of gauge mediation can be realized. [email protected] [email protected] [email protected]

متن کامل

Non - Critical String Duals of N = 1 Quiver Theories

We construct N =1 non-critical strings in four dimensions dual to strongly coupled N=1 quiver gauge theories in the Coulomb phase, generalizing the string duals of Argyres-Douglas superconformal fixed points in N=2 gauge theories. They are the first examples of superstring vacua with an exact worldsheet description dual to chiral N=1 theories. We identify the dual of the non-critical superstrin...

متن کامل

N = 2 Quiver Gauge Theories 5 3 Flux Deformation of IIB

Deformation of N = 2 quiver gauge theories by adjoint masses leads to fixed manifolds of N = 1 superconformal field theories. We elaborate on the role of the complex three– form flux in the IIB duals to these fixed point theories, primarily using field theory techniques. We study the moduli space at a fixed point and find that it is either the two (complex) dimensional ALE space or three–dimens...

متن کامل

Computation in generalised probabilistic theories

From the general difficulty of simulating quantum systems using classical systems, and in particular the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that BQP ⊆ AWPP, where AWPP is a classical complexity cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2015

ISSN: 1029-8479

DOI: 10.1007/jhep08(2015)085