Designs in Finite Metric Spaces: A Probabilistic Approach

نویسندگان

چکیده

A finite metric space is called here distance degree regular if its sequence the same for every vertex. notion of designs in such spaces introduced that generalizes Q-polynomial distance-regular graphs. An approximation their cumulative distribution function, based on Christoffel function theory given. As an application we derive limit laws weight distributions binary orthogonal arrays strength going to infinity. analogous result combinatorial infinity

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

Expansion semigroups in probabilistic metric spaces

We present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.

متن کامل

expansion semigroups in probabilistic metric spaces

we present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.

متن کامل

Strong $I^K$-Convergence in Probabilistic Metric Spaces

In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2021

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-021-02338-1