Design of Reduced-Order Multiple Observers for Uncertain Systems with Unknown Inputs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Reduced-order Functional Observers for Linear Systems with Unknown Inputs

This brief paper presents new conditions for the existence and design of reduced-order linear functional state observers for linear systems with unknown inputs. Systematic procedures for the synthesis of reduced-order functional observers are given. Numerical examples are given to illustrate the attractiveness and simplicity of the new design procedures.

متن کامل

Reduced-order observer design for descriptor systems with unknown inputs

A new method for the design of reduced-order observers for descriptor systems with unknown inputs is presented. The approach is based on the generalized constrained Sylvester equation. Sufficient conditions for the existence of the observer are given.

متن کامل

Full-order observers for linear systems with unknown inputs

This paper presents a simple method to design a full-order observer for linear systems with unknown inputs. The necessary and sufficient conditions for the existence of the observer are given.

متن کامل

Complements to Full Order Observers Design for Linear Systems with Unknown Inputs

This note completes the obtained results in [1]. It presents a full-order observers for linear systems with unknown inputs in the state and in the measurement equations. It gives a more general approach for the observers design than that presented in [1] and it shows that all the obtained results are independent of the choice of the generalized inverses considered in the observers design . Cont...

متن کامل

Discrete-Time Reduced Order Neural Observers for Uncertain Nonlinear Systems

This paper focusses on a novel discrete-time reduced order neural observer for nonlinear systems, which model is assumed to be unknown. This neural observer is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF)-based algorithm, using a parallel configu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complexity

سال: 2018

ISSN: 1076-2787,1099-0526

DOI: 10.1155/2018/5231989