Descent via isogeny in dimension 2

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descent via Isogeny in Dimension 2

A technique of descent via 4-isogeny is developed on the Jacobian of a curve of genus 2 of the form: Y 2 = q1(X)q2(X)q3(X), where each qi(X) is a quadratic defined over Q. The technique offers a realistic prospect of calculating rank tables of Mordell-Weil groups in higher dimension. A selection of worked examples is included as illustration.

متن کامل

Descent via (3, 3)-isogeny on Jacobians of Genus 2 Curves

We give parametrisation of curves C of genus 2 with a maximal isotropic (Z/3) in J [3], where J is the Jacobian variety of C, and develop the theory required to perform descent via (3, 3)-isogeny. We apply this to several examples, where it can shown that non-reducible Jacobians have nontrivial 3-part of the Tate-Shafarevich group.

متن کامل

Descent via (5, 5)-isogeny on Jacobians of Genus 2 Curves

We describe a family of curves C of genus 2 with a maximal isotropic (Z/5) in J [5], where J is the Jacobian variety of C, and develop the theory required to perform descent via (5, 5)isogeny. We apply this to several examples, where it can shown that non-reducible Jacobians have nontrivial 5-part of the Tate-Shafarevich group.

متن کامل

Explicit isogeny descent on elliptic curves

In this note, we consider an `-isogeny descent on a pair of elliptic curves over Q. We assume that ` > 3 is a prime. The main result expresses the relevant Selmer groups as kernels of simple explicit maps between finitedimensional F`-vector spaces defined in terms of the splitting fields of the kernels of the two isogenies. We give examples of proving the `-part of the Birch and Swinnerton-Dyer...

متن کامل

Descent via isogeny on elliptic curves with large rational torsion subgroups

We outline PARI programs which assist with various algorithms related to descent via isogeny on elliptic curves. We describe, in this context, variations of standard inequalities which aid the computation of members of the Tate-Shafarevich group. We apply these techniques to several examples: in one case we use descent via 9-isogeny to determine the rank of an elliptic curve; in another case we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1994

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-66-1-23-43