Derived category of squarefree modules and local cohomology with monomial ideal support
نویسندگان
چکیده
منابع مشابه
Derived Category of Squarefree Modules and Local Cohomology with Monomial Ideal Support
A squarefree module over a polynomial ring S = k[x1, . . . , xn] is a generalization of a Stanley-Reisner ring, and allows us to apply homological methods to the study of monomial ideals more systematically. The category Sq of squarefree modules is equivalent to the category of finitely generated left Λ-modules, where Λ is the incidence algebra of the Boolean lattice 2. The derived category D(S...
متن کاملCharacteristic Cycles of Local Cohomology Modules of Monomial Ideals
In his paper Lyu G Lyubeznik uses the theory of algebraic D modules to study local cohomology modules He proves in particular that if R is any regular ring containing a eld of characteristic zero and I R is an ideal the local cohomology modules H i I R have the following properties i H m H i I R is injective where m is any maximal ideal of R ii inj dimR H i I R dimRH i I R iii The set of the as...
متن کاملGraph and Depth of a Monomial Squarefree Ideal
Let I be a monomial squarefree ideal of a polynomial ring S over a field K such that the sum of every three different ideals of its minimal prime ideals is the maximal ideal of S, or more generally a constant ideal. We associate to I a graph on [s], s = |MinS/I|, on which we may read the depth of I. In particular, depthS I does not depend on char K. Also we show that I satisfies Stanley’s Conje...
متن کاملTOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES
Let (R,m) be a Noetherian local ring, M be a finitely generated R-module of dimension n and a be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of AsshR M, then there exists an ideal a of R such that AttR Hna (M)=T. As an application, we give some relationships between top local cohomology modules and top f...
متن کاملARTINIANNESS OF COMPOSED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring and let $fa$, $fb$ be two ideals of $R$ such that $R/({fa+fb})$ is Artinian. Let $M$, $N$ be two finitely generated $R$-modules. We prove that $H_{fb}^j(H_{fa}^t(M,N))$ is Artinian for $j=0,1$, where $t=inf{iin{mathbb{N}_0}: H_{fa}^i(M,N)$ is not finitelygenerated $}$. Also, we prove that if $DimSupp(H_{fa}^i(M,N))leq 2$, then $H_{fb}^1(H_{fa}^i(M,N))$ i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2004
ISSN: 0025-5645
DOI: 10.2969/jmsj/1191418707