Densely Defined Equilibrium Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Densely Defined Equilibrium Problems

In the present work we deal with set-valued equilibrium problems for which we provide sufficient conditions for the existence of a solution. The conditions that we consider are imposed not on the whole domain, but rather on a self segment-dense subset of it, a special type of dense subset. As an application, we obtain a generalized Debreu-Gale-Nikaido type theorem, with a considerable weakned W...

متن کامل

Hopf bifurcation for non-densely defined Cauchy problems

In this paper, we establish a Hopf bifurcation theorem for abstract Cauchy problems in which the linear operator is not densely defined and is not a Hille–Yosida operator. The theorem is proved using the center manifold theory for nondensely defined Cauchy problems associated with the integrated semigroup theory. As applications, the main theorem is used to obtain a known Hopf bifurcation resul...

متن کامل

Inequality Problems of Equilibrium Problems with Application

This paper aims at establishing the existence of results for a nonstandard equilibrium problems $(EP_{N})$. The solutions of this inequality are discussed in a subset $K$ (either bounded or unbounded) of a Banach spaces $X$. Moreover, we enhance the main results by application of some differential inclusion.

متن کامل

Gaussian mean boundedness of densely defined linear operators

It is known (for details see, Traub, Wasilkowski, and Wofniakowski, 1988, “Information-Based Complexity,” Academic Press, New York) that a linear problem with solution operator S: X --f Y in the probabilistic or average case setting has finite e-complexity with respect to a probability measure k iff S E L2(X, CL; Y) or, equivalently, iff I E L2( Y, h 0 S-i; Y) where I denotes the identity opera...

متن کامل

Periodic Solutions of Non-Densely Defined Delay Evolution Equations

We study finite delay evolution equation { x′(t) = Ax(t) + F (t, xt), t ≥ 0, x0 = φ ∈ C ([−r, 0] , E) , where linear operator A is non-densely defined and satisfies the Hille-Yosida condition. First we obtain some properties of “integral solutions” in this case, and prove the compactness of an operator determined by integral solutions. This allows us to apply Horn’s fixed point theorem to prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 2015

ISSN: 0022-3239,1573-2878

DOI: 10.1007/s10957-014-0702-8