Degrees of compression and inertia for free-abelian times free groups
نویسندگان
چکیده
We introduce the concepts of degree inertia, diG(H), and compression, dcG(H), a finitely generated subgroup H given group G. For case direct products free-abelian free groups, we compute compression give an upper bound for inertia. Imposing some technical assumptions to supremum involved in definition notion called restricted diG′(H), and, again Zm×Fn, provide explicit formula relating it inertia its projection part, diFn′(Hπ).
منابع مشابه
Jump degrees of torsion-free abelian groups
We show, for each computable ordinal α and degree a > 0(α), the existence of a torsion-free abelian group with proper αth jump degree a.
متن کاملDegrees of orders on torsion-free Abelian groups
We show that if H is an effectively completely decomposable computable torsion-free abelian group, then there is a computable copy G of H such that G has computable orders but not orders of every (Turing) degree.
متن کاملFree abelian lattice-ordered groups
Let n be a positive integer and FA`(n) be the free abelian latticeordered group on n generators. We prove that FA`(m) and FA`(n) do not satisfy the same first-order sentences in the language L={+,−, 0,∧,∨} if m 6= n. We also show that Th(FA`(n)) is decidable iff n ∈ {1, 2}. Finally, we apply a similar analysis and get analogous results for the free finitely generated vector lattices. A. M. S. C...
متن کاملMaximal abelian subgroups of free profinite groups
THEOREM. Let F be the free profinite group on a set X, where \X\ > 2, and let n be a non-empty set of primes. Then F has a maximal abelian subgroup isomorphic to HpEn Zp. The idea of the proof is the following: we show that A — Ylpe7I1p is a free factor of Pa, i.e. fia ^ A *B for some profinite group B. To conclude from this that A is a maximal abelian subgroup of Fa (the general case then foll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2020.09.040