Degree formula for Grassmann bundles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal Degree Distance of Grassmann Graphs

Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u  d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.

متن کامل

The Verlinde Formula for Parabolic Bundles

Let Σ be a compact Riemann surface of genus g, and G ̄SU(n). The central element c ̄ diag(e#id/n,... , e#id/n) for d coprime to n is introduced. The Verlinde formula is proved for the Riemann–Roch number of a line bundle over the moduli space g," (c,Λ) of representations of the fundamental group of a Riemann surface of genus g with one boundary component, for which the loop around the boundary is...

متن کامل

The Verlinde Formula for Higgs Bundles

We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of SU(n) proposed in [GP]. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks.

متن کامل

reciprocal degree distance of grassmann graphs

recently, hua et al. defined a new topological index based on degrees and inverse ofdistances between all pairs of vertices. they named this new graph invariant as reciprocaldegree distance as 1{ , } ( ) ( ( ) ( ))[ ( , )]rdd(g) = u v v g d u  d v d u v , where the d(u,v) denotesthe distance between vertices u and v. in this paper, we compute this topological index forgrassmann graphs.

متن کامل

A new proof of the signature formula for surface bundles

Let E → X be an oriented surface bundle over a closed surface. Then the signature sign(E) is determined by the first Chern class of the flat vector bundle Γ associated to the monodromy homomorphism χ :π1(X)→ Sp2h(Z) of E, it is equal to −4〈c1(Γ ), [X]〉. The aim of this paper is to give an algebro-topological proof of this formula, i.e., one that does not use the Atiyah–Singer index theorem.  2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2015

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2015.05.024