Degree bounds for Gröbner bases of modules
نویسندگان
چکیده
Let $F$ be a non-negatively graded free module over polynomial ring $\mathbb{K}[x_1,\dots,x_n]$ generated by $m$ basis elements. $M$ submodule of elements in with degrees bounded $D$ and dim $F/M$=$r$. We prove that if is graded, the degree reduced Gr\"{o}bner for any term order $2\left[1/2((Dm)^{n-r}m+D) \right]^{2^{r-1}}$. If not bound $2\left[1/2((Dm)^{(n-r)^2}m+D) \right]^{2^{r}}$. This generalization Dub\'{e}(1990) Mayr-Ritscher(2013)'s bounds ideals ring.
منابع مشابه
Dimension-Dependent Upper Bounds for Gröbner Bases
We improve certain degree bounds for Gröbner bases of polynomial ideals in generic position. We work exclusively in deterministically verifiable and achievable generic positions of a combinatorial nature, namely either strongly stable position or quasi stable position. Furthermore, we exhibit new dimension(and depth-)dependent upper bounds for the Castelnuovo-Mumford regularity and the degrees ...
متن کامل1786 - 0091 Gröbner Bases of Modules over Σ − Pbw Extensions
For σ−PWB extensions, we extend to modules the theory of Gröbner bases of left ideals presented in [5]. As an application, if A is a bijective quasi-commutative σ − PWB extension, we compute the module of syzygies of a submodule of the free module A.
متن کاملMultiplicative Bases, Gröbner Bases, and Right Gröbner Bases
Before surveying the results of the paper, we introduce path algebras. Path algebras play a central role in the representation theory of finite-dimensional algebras (Gabriel, 1980; Auslander et al., 1995; Bardzell, 1997) and the theory of Gröbner bases (Bergman, 1978; Mora, 1986; Farkas et al., 1993) has been an important tool in some results (Feustel et al., 1993; Green and Huang, 1995; Bardze...
متن کاملImplementing Gröbner bases for operads
We present an implementation of the algorithm for computing Gröbner bases for operads due to the first author and A. Khoroshkin. We discuss the actual algorithms, as well as the choices made for the implementation platform and the data representation. We indicate strengths and weaknesses of our approach, and discuss possible directions for expanding the current work.
متن کاملGröbner Bases for Linearized Polynomials
In this work we develop the theory of Gröbner bases for modules over the ring of univariate linearized polynomials with coefficients from a finite field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2022
ISSN: ['1095-855X', '0747-7171']
DOI: https://doi.org/10.1016/j.jsc.2021.11.003