Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
نویسندگان
چکیده
Abstract Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on maps. consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), MobileNet-v2 (MN), fine-tune them dataset KCN normal cases, each including also PI classifier. Then, our EDTL method combines output probabilities five classifiers to obtain decision fusion probabilities. Individually, classifier achieved 93.1% accuracy, whereas deep reached classification accuracies over 90% only in isolated cases. Overall, average accuracy networks maps ranged from 86% (SfN) 89.9% (AN). ensemble increased values ranging (92.2% 93.1%) for SqN (93.1% 94.8%) AN. Including ensemble-specific combinations maps’ 98.3%. Moreover, visualization first learner filters Grad-CAMs confirmed that had learned relevant features. This study shows potential creating ensembles fine-tuned with transfer learning strategy as it resulted improved while showing learnable agree knowledge. step further towards deployment computer-assisted system help confirm perform fast accurate treatment.
منابع مشابه
Keratoconus detection using corneal topography.
UNLABELLED PURPOSETo review the topographic patterns associated with keratoconus suspects and provide criteria for keratoconus screening. METHODS Case study using maps from the NIDEK OPD-Scan II and OPD Station to highlight patterns seen in keratoconic corneas. RESULTS Five criteria are listed for the detection of keratoconus: 1) apex of the cone is not centered at the 6-o'clock semi-meridi...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Concept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملMatrix learning for topographic neural maps
OF THE DISSERTATION Matrix Learning for Topographic Neural Maps
متن کاملFace Detection using Deep Learning: An Improved Faster RCNN Approach
In this report, we present a new face detection scheme using deep learning and achieve the state-of-the-art detection performance on the well-known FDDB face detetion benchmark evaluation. In particular, we improve the state-of-the-art faster RCNN framework by combining a number of strategies, including feature concatenation, hard negative mining, multi-scale training, model pretraining, and pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cognitive Computation
سال: 2021
ISSN: ['1866-9964', '1866-9956']
DOI: https://doi.org/10.1007/s12559-021-09880-3