Deep partial least squares for instrumental variable regression

نویسندگان

چکیده

In this paper, we propose deep partial least squares for the estimation of high-dimensional nonlinear instrumental variable regression. As a precursor to flexible neural network architecture, our methodology uses dimension reduction and feature selection from set instruments covariates. A central theoretical result, due Brillinger (2012) Selected Works Daving Brillinger. 589-606, shows that provided by is consistent weights are estimated up proportionality constant. We illustrate with synthetic datasets sparse correlated structure draw applications effect childbearing on mother's labor supply based classic data Chernozhukov et al. Ann Rev Econ. (2015b):649–688. The results as well show method significantly outperforms other related methods. Finally, conclude directions future research.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Least Squares Regression (PLS)

Number of latents The same number of factors will be extracted for PLS responses as for PLS factors. The researcher must specify how many latents to extract (in SPSS the default is 5). There is no one criterion for deciding how many latents to employ. Common alternatives are: 1. Cross-validating the model with increasing numbers of factors, then choosing the number with minimum prediction error...

متن کامل

Partial Least Squares (PLS) Regression

Pls regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. It is particularly useful when we need to predict a set of dependent variables from a (very) large set of independent variables (i.e., predictors). It originated in the social sciences (specifically economy, Herman Wold 1966) but became popular first in chemomet...

متن کامل

Partial least squares methods: partial least squares correlation and partial least square regression.

Partial least square (PLS) methods (also sometimes called projection to latent structures) relate the information present in two data tables that collect measurements on the same set of observations. PLS methods proceed by deriving latent variables which are (optimal) linear combinations of the variables of a data table. When the goal is to find the shared information between two tables, the ap...

متن کامل

Robust Methods for Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is a linear regression technique developed to deal with high-dimensional regressors and one or several response variables. In this paper we introduce robustified versions of the SIMPLS algorithm being the leading PLSR algorithm because of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance matrix between the response variab...

متن کامل

Deep Least Squares Regression for Speaker Adaptation

Recently, speaker adaptation methods in deep neural networks (DNNs) have been widely studied for automatic speech recognition. However, almost all adaptation methods for DNNs have to consider various heuristic conditions such as mini-batch sizes, learning rate scheduling, stopping criteria, and initialization conditions because of the inherent property of a stochastic gradient descent (SGD)-bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Stochastic Models in Business and Industry

سال: 2023

ISSN: ['1526-4025', '1524-1904']

DOI: https://doi.org/10.1002/asmb.2787