Deep Neural Network Approximation of Nonlinear Model Predictive Control
نویسندگان
چکیده
منابع مشابه
Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملExplicit nonlinear predictive control algorithms with neural approximation
This paper describes two nonlinear Model Predictive Control (MPC) algorithms with neural approximation. The first algorithm mimics the MPC algorithm in which a linear approximation of the model is successively calculated on-line at each sampling instant and used for prediction. The second algorithm mimics the MPC strategy in which a linear approximation of the predicted output trajectory is suc...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملNeural Network Based Model Predictive Control
Greg Martin Pavilion Technologies Austin, TX 78758 [email protected] Mark Gerules Pavilion Technologies Austin, TX 78758 [email protected] Model Predictive Control (MPC), a control algorithm which uses an optimizer to solve for the optimal control moves over a future time horizon based upon a model of the process, has become a standard control technique in the process industries over the past two ...
متن کاملAdaptive Neural Network Model Predictive Control
Neural network model predictive controllers have demonstrated high potential in the non-conventional branch of nonlinear control. However, the major issue in process control of nonlinear systems is the sensitivity to parameters variations and uncertainties. Indeed, when the process is controlled by neural network model predictive control (NNMPC) and subject to parameters variations or uncertain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.538