Deep multiple instance learning for foreground speech localization in ambient audio from wearable devices
نویسندگان
چکیده
منابع مشابه
Multiple Instance Deep Learning for Weakly Supervised Small-Footprint Audio Event Detection
State-of-the-art audio event detection (AED) systems rely on supervised learning using strongly labeled data. However, this dependence severely limits scalability to large-scale datasets where fine resolution annotations are too expensive to obtain. In this paper, we propose a multiple instance learning (MIL) framework for multi-class AED using weakly annotated labels. The proposed MIL framewor...
متن کاملAttention-based Deep Multiple Instance Learning
Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a bag of instances. In this paper, we state the MIL problem as learning the Bernoulli distribution of the bag label where the bag label probability is fully parameterized by neural networks. Furthermore, we propose a neural network-based permutation-invariant aggregation operator tha...
متن کاملDeep Multiple Instance Learning for Zero-shot Image Tagging
In-line with the success of deep learning on traditional recognition problem, several end-to-end deep models for zero-shot recognition have been proposed in the literature. These models are successful to predict a single unseen label given an input image, but does not scale to cases where multiple unseen objects are present. In this paper, we model this problem within the framework of Multiple ...
متن کاملMultiple-Instance Learning from Distributions
We propose a new theoretical framework for analyzing the multiple-instance learning (MIL) setting. In MIL, training examples are provided to a learning algorithm in the form of labeled sets, or “bags,” of instances. Applications of MIL include 3-D quantitative structure– activity relationship prediction for drug discovery and content-based image retrieval for web search. The goal of an algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Audio, Speech, and Music Processing
سال: 2021
ISSN: 1687-4722
DOI: 10.1186/s13636-020-00194-0