Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

A Deep Learning Method for Classification of EEG Data Based on Motor Imagery

Effectively extracting EEG data features is the key point in Brain Computer Interface technology. In this paper, aiming at classifying EEG data based on Motor Imagery task, Deep Learning (DL) algorithm was applied. For the classification of left and right hand motor imagery, firstly, based on certain single channel, a weak classifier was trained by deep belief net (DBN); then borrow the idea of...

متن کامل

A Low Cost Eeg Based Bci Prosthetic Using Motor Imagery

Brain Computer Interfaces (BCI) provide the opportunity to control external devices using the brain ElectroEncephaloGram (EEG) signals. In this paper we propose two software framework in order to control a 5 degree of freedom robotic and prosthetic hand. Results are presented where an Emotiv Cognitive Suite (i.e. the 1 st framework) combined with an embedded software system (i.e. an open source...

متن کامل

Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata

Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might inc...

متن کامل

Motor Imagery Based Eeg Signal Classification Using Self Organizing Maps

MOTOR IMAGERY BASED EEG SIGNAL CLASSIFICATION USING SELF ORGANIZING MAPS *Muhammad Zeeshan Baig, Yasar Ayaz National University of Science and Technology Islamabad, Pakistan *Contact: [email protected] ABSTRACT: Classification of Motor Imagery (MI) tasks based EEG signals effectively is the main hurdle in order to develop online Brain Computer interface (BCI). In this research article, a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2020

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0234178