Deep Cost Adaptive Convolutional Network: A Classification Method for Imbalanced Mechanical Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network

BACKGROUND Ocular images play an essential role in ophthalmological diagnoses. Having an imbalanced dataset is an inevitable issue in automated ocular diseases diagnosis; the scarcity of positive samples always tends to result in the misdiagnosis of severe patients during the classification task. Exploring an effective computer-aided diagnostic method to deal with imbalanced ophthalmological da...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

Adaptive Oversampling for Imbalanced Data Classification

Data imbalance is known to significantly hinder the generalization performance of supervised learning algorithms. A common strategy to overcome this challenge is synthetic oversampling, where synthetic minority class examples are generated to balance the distribution between the examples of the majority and minority classes. We present a novel adaptive oversampling algorithm, VIRTUAL, that comb...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2986419