Deep Convolutional Neural Network for Mill Feed Size Characterization
نویسندگان
چکیده
منابع مشابه
Deep Columnar Convolutional Neural Network
Recent developments in the field of deep learning have shown that convolutional networks with several layers can approach human level accuracy in tasks such as handwritten digit classification and object recognition. It is observed that the state-of-the-art performance is obtained from model ensembles, where several models are trained on the same data and their predictions probabilities are ave...
متن کاملDeep Convolutional Neural Network for Image Deconvolution
Many fundamental image-related problems involve deconvolution operators. Real blur degradation seldom complies with an ideal linear convolution model due to camera noise, saturation, image compression, to name a few. Instead of perfectly modeling outliers, which is rather challenging from a generative model perspective, we develop a deep convolutional neural network to capture the characteristi...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملAnalysis of Deep Convolutional Neural Network Architectures
In computer vision many tasks are solved using machine learning. In the past few years, state of the art results in computer vision have been achieved using deep learning. Deeper machine learning architectures are better capable in handling complex recognition tasks, compared to previous more shallow models. Many architectures for computer vision make use of convolutional neural networks which ...
متن کاملRelation Classification via Convolutional Deep Neural Network
The state-of-the-art methods used for relation classification are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NLP) systems, which leads to the propagation of the errors in the existing tools and hinders the pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.09.172