Decompositions of Grothendieck Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorial Grothendieck Polynomials

In this paper, we study Grothendieck polynomials from a combinatorial viewpoint. We introduce the factorial Grothendieck polynomials, analogues of the factorial Schur functions and present some of their properties, and use them to produce a generalisation of a Littlewood-Richardson rule for Grothendieck polynomials.

متن کامل

Quantum Grothendieck Polynomials

Quantum K-theory is a K-theoretic version of quantum cohomology, which was recently defined by Y.-P. Lee. Based on a presentation for the quantum K-theory of the classical flag variety Fln, we define and study quantum Grothendieck polynomials. We conjecture that they represent Schubert classes (i.e., the natural basis elements) in the quantum K-theory of Fln, and present strong evidence for thi...

متن کامل

Combinatorial Formulae for Grothendieck-demazure and Grothendieck Polynomials

∂if = f− sif xi − xi+1 where si acts on f by transposing xi and xi+1 and let π̃i = ∂i(xi(1− xi+1)f) Then the Grothendieck-Demazure polynomial κα, which is attributed to A. Lascoux and M. P. Schützenberger, is defined as κα = x α1 1 x α2 2 x α3 3 ... if α1 ≥ α2 ≥ α3 ≥ ..., i.e. α is non-increasing, and κα = π̃iκαsi if αi < αi+1, where si acts on α by transposing the indices. Example 2.1. Let α = (...

متن کامل

Decompositions of Laurent Polynomials

In the 1920’s, Ritt studied the operation of functional composition g ◦ h(x) = g(h(x)) on complex rational functions. In the case of polynomials, he described all the ways in which a polynomial can have multiple ‘prime factorizations’ with respect to this operation. Despite significant effort by Ritt and others, little progress has been made towards solving the analogous problem for rational fu...

متن کامل

Notes on Schubert, Grothendieck and Key Polynomials

We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco–Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnx207