Decomposition rank of approximately subhomogeneous C*-algebras
نویسندگان
چکیده
منابع مشابه
Decomposition rank of subhomogeneous C ∗ -algebras
We analyze the decomposition rank (a notion of covering dimension for nuclear C-algebras introduced by E. Kirchberg and the author) of subhomogeneous C-algebras. In particular we show that a subhomogeneous C-algebra has decomposition rank n if and only if it is recursive subhomogeneous of topological dimension n and that n is determined by the primitive ideal space. As an application, we use re...
متن کاملOn the Classification of Simple Approximately Subhomogeneous C*-algebras Not Necessarily of Real Rank Zero
A classification is given of certain separable nuclear C*-algebras not necessarily of real rank zero, namely the class of simple C*-algebras which are inductive limits of continuous-trace C*-algebras whose building blocks have their spectrum homeomorphic to the interval [0, 1] or to a finite disjoint union of closed intervals. In particular, a classification of those stably AI algebras which ar...
متن کاملDecomposition Rank of Z-stable C∗-algebras
We show that C∗-algebras of the form C(X)⊗Z, where X is compact and Hausdorff and Z denotes the Jiang–Su algebra, have decomposition rank at most 2. This amounts to a dimension reduction result for C∗-bundles with sufficiently regular fibres. It establishes an important case of a conjecture on the fine structure of nuclear C∗-algebras of Toms and the second named author, even in a non-simple se...
متن کاملA Note on Subhomogeneous C-algebras
We show that finitely generated subhomogeneous C∗-algebras have finite decomposition rank. As a consequence, any separable ASH C∗-algebra can be written as an inductive limit of subhomogeneous C∗-algebras each of which has finite decomposition rank. It then follows from work of H. Lin and of the second named author that the class of simple unital ASH algebras which have real rank zero and absor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum Mathematicum
سال: 2020
ISSN: 1435-5337,0933-7741
DOI: 10.1515/forum-2020-0018