Decomposition of polynomial sets into characteristic pairs
نویسندگان
چکیده
منابع مشابه
Decomposition of polynomial sets into characteristic pairs
A characteristic pair is a pair (G, C) of polynomial sets in which G is a reduced lexicographic Gröbner basis, C is the minimal triangular set contained in G, and C is normal. In this paper, we show that any finite polynomial set P can be decomposed algorithmically into finitely many characteristic pairs with associated zero relations, which provide representations for the zero set of P in term...
متن کاملPolynomial characteristic sets for DFA identification
We study the order in Grammatical Inference algorithms, and its influence on the polynomial (with respect to the data) identification of languages. This work is motivated by recent results on the polynomial convergence of data-driven grammatical inference algorithms. In this paper, we prove a sufficient condition that assures the existence of a characteristic sample whose size is polynomial wit...
متن کاملNumerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components
In engineering and applied mathematics, polynomial systems arise whose solution sets contain components of different dimensions and multiplicities. In this article we present algorithms, based on homotopy continuation, that compute much of the geometric information contained in the primary decomposition of the solution set. In particular, ignoring multiplicities, our algorithms lay out the deco...
متن کاملDecomposition of functions into pairs of intrinsic mode functions
References html#ref-list-1 http://rspa.royalsocietypublishing.org/content/464/2097/2265.full. This article cites 5 articles, 1 of which can be accessed free Subject collections (42 articles) analysis Articles on similar topics can be found in the following collections Email alerting service here the box at the top right-hand corner of the article or click Receive free email alerts when new a...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2020
ISSN: 0025-5718,1088-6842
DOI: 10.1090/mcom/3504