Decomposition-Based Multiobjective Optimization with Invasive Weed Colonies
نویسندگان
چکیده
منابع مشابه
MEDACO: Solving Multiobjective Combinatorial Optimization with Evolution, Decomposition and Ant Colonies
We propose a novel multiobjective evolutionary algorithm, MEDACO, a shorter acronym for MOEA/D-ACO, combining ant colony optimization (ACO) and multiobjective evolutionary algorithm based on decomposition (MOEA/D). The motivation is to use the online-learning capabilities of ACO, according to the Reactive Search Optimization (RSO) paradigm of ”learning while optimizing”, to further improve the ...
متن کاملArtificial Weed Colonies with Neighbourhood Crowding Scheme for Multimodal Optimization
Multimodal optimization is used to find multiple global & local optima which is very useful in many real world optimization problems. But often evolutionary algorithms fail to locate multiple optima as required by the system. Also they fail to store those optima by themselves. So we have to use other selection scheme that can detect & store multiple optima along with evolutionary algorithms. He...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملMultiobjective Flexible Job Shop Scheduling Using a Modified Invasive Weed Optimization
Recently, many studies are carried out with inspirations from ecological phenomena for developing optimization techniques. The new algorithm that is motivated by a common phenomenon in agriculture is colonization of invasive weeds. In this paper, a modified invasive weed optimization (IWO) algorithm is presented for optimization of multiobjective flexible job shop scheduling problems (FJSSPs) w...
متن کاملA Modified Invasive Weed Optimization Algorithm for Multiobjective Flexible Job Shop Scheduling Problems
In this paper, a modified invasive weed optimization (IWO) algorithm is presented for optimization of multiobjective flexible job shop scheduling problems (FJSSPs) with the criteria to minimize the maximum completion time (makespan), the total workload of machines and the workload of the critical machine. IWO is a bio-inspired metaheuristic that mimics the ecological behaviour of weeds in colon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2019
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2019/6943921