Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles

Resurgence theory implies that the non-perturbative (NP) and perturbative (P) data in a QFT are quantitatively related, and that detailed information about nonperturbative saddle point field configurations of path integrals can be extracted from perturbation theory. Traditionally, only stable NP saddle points are considered in QFT, and homotopy group considerations are used to classify them. Ho...

متن کامل

What is QFT? Resurgent trans-series, Lefschetz thimbles, and new exact saddles

This is an introductory level review of recent applications of resurgent trans-series and PicardLefschetz theory to quantum mechanics and quantum field theory. Resurgence connects local perturbative data with global topological structure. In quantum mechanical systems, this program provides a constructive relation between different saddles. For example, in certain cases it has been shown that a...

متن کامل

Perturbation Theory Methods Applied to Critical Phenomena

Different perturbation theory treatments of the Ginzburg–Landau phase transition model are discussed. This includes a criticism of the perturbative renormalization group (RG) approach and a proposal of a novel method providing critical exponents consistent with the known exact solutions in two dimensions. The new values of critical exponents are discussed and compared to the results of numerica...

متن کامل

Saddle Points

To compute the maximum likelihood estimates the log-likelihood function L is maximized with respect to all model parameters. To check that the maximization has been achieved two things have to be satisfied: 1. The vector of first derivatives with respect to the model parameter L′ should be equal to 0. 2. The negative of the matrix of the second derivatives −L′′ should be a positive definite mat...

متن کامل

Toward Picard-Lefschetz Theory of Path Integrals, Complex Saddles and Resurgence

We show that the semi-classical analysis of generic Euclidean path integrals necessarily requires complexification of the action and measure, and consideration of complex saddle solutions. We demonstrate that complex saddle points have a natural interpretation in terms of the Picard-Lefschetz theory. Motivated in part by the semi-classical expansion of QCD with adjoint matter on R × S, we study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2015

ISSN: 1029-8479

DOI: 10.1007/jhep10(2015)056