Davies–Gaffney–Grigor’yan Lemma on graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szemerédi’s Regularity Lemma for Sparse Graphs

A remarkable lemma of Szemerédi asserts that, very roughly speaking, any dense graph can be decomposed into a bounded number of pseudorandom bipartite graphs. This far-reaching result has proved to play a central rôle in many areas of combinatorics, both ‘pure’ and ‘algorithmic.’ The quest for an equally powerful variant of this lemma for sparse graphs has not yet been successful, but some prog...

متن کامل

A probabilistic counting lemma for complete graphs

We prove the existence of many complete graphs in almost all sufficiently dense partitions obtained by an application of Szemerédi’s Regularity Lemma. More precisely, we consider the number of complete graphs K` on ` vertices in `-partite graphs where each partition class consists of n vertices and there is an ε-regular graph onm edges between any two partition classes. We show that for all β >...

متن کامل

Extremal hypergraph theory and algorithmic regularity lemma for sparse graphs

Once invented as an auxiliary lemma for Szemerédi’s Theorem [106] the regularity lemma [105] has become one of the most powerful tools in graph theory in the last three decades which has been widely applied in several fields of mathematics and theoretical computer science. Roughly speaking the lemma asserts that dense graphs can be approximated by a constant number of bipartite quasi-random gra...

متن کامل

A Convexity Lemma and Expansion Procedures for Bipartite Graphs

A hierarchy of classes of graphs is proposed which includes hypercubes, acyclic cubical complexes, median graphs, almost-median graphs, semi-median graphs and partial cubes. Structural properties of these classes are derived and used for the characterization of these classes by expansion procedures, for a characterization of semi-median graphs by metrically defined relations on the edge set of ...

متن کامل

A Pumping Lemma for Pushdown Graphs of Any Level

We present a pumping lemma for the class of ε-contractions of pushdown graphs of level n, for each n. A pumping lemma was proposed by Blumensath, but there is an irrecoverable error in his proof; we present a new proof. Our pumping lemma also improves the bounds given in the invalid paper of Blumensath. 1998 ACM Subject Classification F.1.1 Models of Computation

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 2015

ISSN: 1019-8385,1944-9992

DOI: 10.4310/cag.2015.v23.n5.a4