Data-driven modeling of municipal water system responses to hydroclimate extremes
نویسندگان
چکیده
Abstract Sustainable western US municipal water system (MWS) management depends on quantifying the impacts of supply and demand dynamics infrastructure reliability vulnerability. Systems modeling can replicate interactions but extensive parameterization, high complexity, long development cycles present barriers to widespread adoption. To address these challenges, we develop Machine Learning Water Model (ML-WSM) – a novel application data-driven for MWS management. We apply ML-WSM framework Salt Lake City, Utah system, where benchmark prediction performance seasonal response reservoir levels, groundwater withdrawal, imported requests climate anomalies at daily resolution against an existing systems model. The accurately predicts all components; especially during supply-limiting conditions (KGE > 0.88, PBias < ±3%). Extreme wet challenged model skill communicated appropriate trends relationships component thresholds (e.g., dead pool). correctly classified nearly instances vulnerability (83%) peak severity (100%), encouraging its use as guidance tool that complements models evaluating influences performance.
منابع مشابه
Midcontinental Native American population dynamics and late Holocene hydroclimate extremes
Climate's influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related ...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
application of several data-driven techniques for rainfall-runoff modeling
in this study, several data-driven techniques including system identification, adaptive neuro-fuzzy inference system (anfis), artificial neural network (ann) and wavelet-artificial neural network (wavelet-ann) models were applied to model rainfall-runoff (rr) relationship. for this purpose, the daily stream flow time series of hydrometric station of hajighoshan on gorgan river and the daily rai...
متن کاملA Data-Driven Approach to Modeling Choice
We visit the following fundamental problem: For a ‘generic’ model of consumer choice (namely, distributions over preference lists) and a limited amount of data on how consumers actually make decisions (such as marginal preference information), how may one predict revenues from offering a particular assortment of choices? This problem is central to areas within operations research, marketing and...
متن کاملMulti-Agent Control System for a Municipal Water System
The control system for a municipal water system needs to meet the criteria of maintaining continuity and reliability in the water supply for satisfying the consumer demand while saving the energy costs and maintaining the quality of water. In this paper, we propose an intelligent agent system for a municipal water system. This work shows the benefits of using the agent-based approach in handlin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hydroinformatics
سال: 2023
ISSN: ['1465-1734', '1464-7141']
DOI: https://doi.org/10.2166/hydro.2023.170