Cyclic Covers of Rational Elliptic Surfaces
نویسندگان
چکیده
منابع مشابه
Cyclic Covers of Rings with Rational Singularities
We examine some recent work of Phillip Griffith on étale covers and fibered products from the point of view of tight closure theory. While it is known that cyclic covers of Gorenstein rings with rational singularities are Cohen-Macaulay, we show this is not true in general in the absence of the Gorenstein hypothesis. Specifically, we show that the canonical cover of a Q-Gorenstein ring with rat...
متن کاملCounting Rational Points on Smooth Cyclic Covers
A conjecture of Serre concerns the number of rational points of bounded height on a finite cover of projective space Pn−1. In this paper, we achieve Serre’s conjecture in the special case of smooth cyclic covers of any degree when n ≥ 10, and surpass it for covers of degree r ≥ 3 when n > 10. This is achieved by a new bound for the number of perfect r-th power values of a polynomial with nonsin...
متن کاملRational Points on Elliptic Surfaces
x.1. Elliptic Surfaces Deenition. An elliptic surface consists of a smooth (projective) surface E, a smooth (projective) curve C, and a morphism : E ?! C such that almost all bers E t = ?1 (t) are (smooth projective) curves of genus 1. In addition, we will generally assume that our elliptic surfaces come equipped with an identity section 0 : C ?! E which serves as the identity element of the gr...
متن کاملLinking Numbers in Rational Homology 3-spheres, Cyclic Branched Covers and Infinite Cyclic Covers
We study the linking numbers in a rational homology 3-sphere and in the infinite cyclic cover of the complement of a knot. They take values in Q and inQ(Z[t, t−1]) respectively, where Q(Z[t, t−1]) denotes the quotient field of Z[t, t−1]. It is known that the modulo-Z linking number in the rational homology 3-sphere is determined by the linking matrix of the framed link and that the modulo-Z[t, ...
متن کاملIntegral Models of Extremal Rational Elliptic Surfaces
Miranda and Persson classified all extremal rational elliptic surfaces in characteristic zero. We show that each surface in Miranda and Persson’s classification has an integral model with good reduction everywhere (except for those of type X11( j), which is an exceptional case), and that every extremal rational elliptic surface over an algebraically closed field of characteristic p > 0 can be o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2009
ISSN: 0035-7596
DOI: 10.1216/rmj-2009-39-6-1895