Curvature bounds via Ricci smoothing

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure Rigidity of Ricci Curvature Lower Bounds

The measure contraction property, MCP for short, is a weak Ricci curvature lower bound conditions for metric measure spaces. The goal of this paper is to understand which structural properties such assumption (or even weaker modifications) implies on the measure, on its support and on the geodesics of the space. We start our investigation from the euclidean case by proving that if a positive Ra...

متن کامل

Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds

The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in a Polish measure space (X,m) and a canonical distance dE that induces the original topology of X. We first characterize the distin...

متن کامل

Greatest lower bounds on Ricci curvature for toric Fano manifolds

In this short note, based on the work of Wang and Zhu (2004) [8], we determine the greatest lower bounds on Ricci curvature for all toric Fano manifolds. © 2011 Elsevier Inc. All rights reserved.

متن کامل

Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian Manifolds

Measure contraction property is one of the possible generalizations of Ricci curvature bound to more general metric measure spaces. In this paper, we discover sufficient conditions for a three dimensional contact subriemannian manifold to satisfy this property.

متن کامل

Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds

dL(Mo,M1) = inf[llogdil/l + Ilogdil/-II], f where I: Mo -+ MI is a homeomorphism and dil I is the dilatation of I given by dill = SUPXt#2 dist(f(x l ), l(x2))/ dist(x1 ,x2). If Mo and MI are not homeomorphic, define dL(Mo,M1) = +00. Gromov [20] proves the remarkable result that the space of compact Riemannian manifolds L(A,t5 ,D) of sectional curvature IKI :::; A, injectivity radius i M 2: t5 >...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2005

ISSN: 0019-2082

DOI: 10.1215/ijm/1258138317