Curing basis set overcompleteness with pivoted Cholesky decompositions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LAPACK-Style Codes for Pivoted Cholesky and QR Updating

Routines exist in LAPACK for computing the Cholesky factorization of a symmetric positive definite matrix and in LINPACK there is a pivoted routine for positive semidefinite matrices. We present new higher level BLAS LAPACK-style codes for computing this pivoted factorization. We show that these can be many times faster than the LINPACK code. Also, with a new stopping criterion, there is more r...

متن کامل

Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.

Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions ...

متن کامل

Pivoted Cholesky decomposition by Cross Approximation for efficient solution of kernel systems

Large kernel systems are prone to be ill-conditioned. Pivoted Cholesky decomposition (PCD) render a stable and efficient solution to the systems without a perturbation of regularization. This paper proposes a new PCD algorithm by tuning Cross Approximation (CA) algorithm to kernel matrices which merges the merits of PCD and CA, and proves as well as numerically exemplifies that it solves large ...

متن کامل

Reduced scaling in electronic structure calculations using Cholesky decompositions

We demonstrate that substantial computational savings are attainable in electronic structure calculations using a Cholesky decomposition of the two-electron integral matrix. In most cases, the computational effort involved calculating the Cholesky decomposition is less than the construction of one Fock matrix using a direct O(N) procedure. © 2003 American Institute of Physics. @DOI: 10.1063/1.1...

متن کامل

Fast Moving Window Algorithm for QR and Cholesky Decompositions

This paper proposes a fast moving window algorithm for QR and Cholesky decompositions by simultaneously applying data updating and downdating. The developed procedure is based on inner products and entails a similar downdating to that of the Chambers’ approach. For adding and deleting one row of data from the original matrix, a detailed analysis shows that the proposed algorithm outperforms exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2019

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.5139948