Cubic Spline Collocation Method for Fractional Differential Equations
نویسندگان
چکیده
منابع مشابه
Numerical solution of fractional partial differential equations using cubic B-spline wavelet collocation method
Physical processes with memory and hereditary properties can be best described by fractional differential equations based on the memory effect of fractional derivatives. For that reason reliable and efficient techniques for the solution of fractional differential equations are needed. Our aim is to generalize the wavelet collocation method to fractional partial differential equations using cubi...
متن کاملSPLINE COLLOCATION FOR FREDHOLM AND VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
متن کاملSpectral-collocation Method for Fractional Fredholm Integro-differential Equations
We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of FredholmVolterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L∞ norm and weighted L2-norm. The numerical examp...
متن کاملWavelet Collocation Method for Solving Multiorder Fractional Differential Equations
The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by...
متن کاملSPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2013
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2013/864025