CUBIC SPLINE COALESCENCE FRACTAL INTERPOLATION THROUGH MOMENTS
نویسندگان
چکیده
منابع مشابه
Cubic Spline Coalescence Fractal Interpolation through Moments
This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated...
متن کاملSpline Coalescence Hidden Variable Fractal Interpolation Functions
This paper generalizes the classical spline using a new construction of spline coalescence hidden variable fractal interpolation function (CHFIF). The derivative of a spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of a nondiagonal iterated function system. Our construction generalizes the construction of Barnsley and Harrington (198...
متن کاملGeneralized Cubic Spline Fractal Interpolation Functions
We construct a generalized Cr-Fractal Interpolation Function (Cr-FIF) f by prescribing any combination of r values of the derivatives f (k), k = 1, 2, . . . , r, at boundary points of the interval I = [x0, xN ]. Our approach to construction settles several questions of Barnsley and Harrington [J. Approx Theory, 57 (1989), pp. 14–34] when construction is not restricted to prescribing the values ...
متن کاملMonotonic Cubic Spline Interpolation
This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C2 continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is...
متن کاملFractal Dimension of Coalescence Hidden-variable Fractal Interpolation Surface
In the present paper, the bounds on fractal dimension of Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) in R on a equispaced mesh are found. These bounds determine the conditions on the free parameters for fractal dimension of the constructed CHFIS to become close to 3. The results derived here are tested on a tsunami wave surface by computing the lower and upper bounds of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractals
سال: 2007
ISSN: 0218-348X,1793-6543
DOI: 10.1142/s0218348x07003381