Crystallographic arrangements: Weyl groupoids and simplicial arrangements

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Simplicial Pseudoline Arrangements

A simplicial arrangement of pseudolines is a collection of topological lines in the projective plane where each region that is formed is triangular. This paper refines and develops David Eppstein’s notion of a kaleidoscope construction for symmetric pseudoline arrangements to construct and analyze several infinite families of simplicial pseudoline arrangements with high degrees of geometric sym...

متن کامل

Simplicial arrangements on convex cones

We introduce the notion of a Tits arrangement on a convex open cone as a special case of (infinite) simplicial arrangements. Such an object carries a simplicial structure similar to the geometric representation of Coxeter groups. The standard constructions of subarrangements and restrictions, which are known in the case of finite hyperplane arrangements, work as well in this more general settin...

متن کامل

Cubic Partial Cubes from Simplicial Arrangements

We show how to construct a cubic partial cube from any simplicial arrangement of lines or pseudolines in the projective plane. As a consequence, we find nine new infinite families of cubic partial cubes as well as many sporadic examples.

متن کامل

The integer cohomology of toric Weyl arrangements

A toric arrangement is a finite set of hypersurfaces in a complex torus, every hypersurface being the kernel of a character. In the present paper we prove that if T W̃ is the toric arrangement defined by the cocharacters lattice of a Weyl group W̃ , then the integer cohomology of its complement is torsion free.

متن کامل

Generalized Catalan Numbers, Weyl Groups and Arrangements of Hyperplanes

For an irreducible, crystallographic root system Φ in a Euclidean space V and a positive integer m, the arrangement of hyperplanes in V given by the affine equations (α, x)= k, for α∈Φ and k=0, 1, . . . ,m, is denoted here by AΦ . The characteristic polynomial of AΦ is related in the paper to that of the Coxeter arrangement AΦ (corresponding to m=0), and the number of regions into which the fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2011

ISSN: 0024-6093

DOI: 10.1112/blms/bdr009