Crossover point of the field effect transistor and interconnect applications in turbostratic multilayer graphene nanoribbon channel

نویسندگان

چکیده

Abstract The electrical transport properties of a turbostratic multilayer graphene nanoribbon (GNR) with various number layers (1–8 layers) were investigated using field effect transistor single GNR channel. In the 5 or less, carrier mobility and I on /I off ratio in FETs improved by slightly increasing conductance layers, meaning that excellent semiconducting characteristic. improvement promotes stacking structure. 6 more, although degraded, extremely layers. This indicates thicker becomes significantly lower resistivity wire as metallic We revealed crossover point physical between characteristics is determined strength to screen surrounding environment effects such charged impurity substrate. Our comprehensive investigation provides design guidance for device applications materials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor

Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...

متن کامل

Theoretical Study of a Zigzag Graphene Nanoribbon Field Effect Transistor

Graphene nanoribbons with zigzag edges show metallic behavior and are thus considered not appropriate for transistor applications. However, we show that by engineering line defects and using positive substrate impurities one can obtain a suitable effective transport gap at least for analog applications. The transfer and output characteristics of these structures are investigated employing quant...

متن کامل

Graphene nanoribbon field-effect transistor at high bias

Combination of high-mean free path and scaling ability makes graphene nanoribbon (GNR) attractive for application of field-effect transistors and subject of intense research. Here, we study its behaviour at high bias near and after electrical breakdown. Theoretical modelling, Monte Carlo simulation, and experimental approaches are used to calculate net generation rate, ionization coefficient, c...

متن کامل

Trilayer Graphene Nanoribbon Field Effect Transistor Analytical Model

The approaching scaling of Field Effect Transistors (FETs) in nanometer scale assures the smaller dimension, low-power consumption, very large computing power, low energy delay product and high density as well as high speed in processor. Trilayer graphene nanoribbon with different stacking arrangements (ABA and ABC) indicates different electrical properties. Based on this theory, ABA-stacked tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2021

ISSN: ['2045-2322']

DOI: https://doi.org/10.1038/s41598-021-89709-z